home *** CD-ROM | disk | FTP | other *** search
/ IRIX Base Documentation 2002 November / SGI IRIX Base Documentation 2002 November.iso / usr / share / catman / p_man / cat3 / SCSL / zpsldu.z / zpsldu
Encoding:
Text File  |  2002-10-03  |  43.7 KB  |  595 lines

  1.  
  2.  
  3.  
  4. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  5.  
  6.  
  7.  
  8. NNNNAAAAMMMMEEEE
  9.      ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDeeeessssttttrrrrooooyyyy, ZZZZPPPPSSSSLLLLDDDDUUUU____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm, ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr, ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC,
  10.      ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt, ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCPPPPaaaatttthhhh, ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOrrrrddddeeeerrrriiiinnnngggg, ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss,
  11.      ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ, ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee, ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM, ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSttttoooorrrraaaaggggeeee -
  12.      Parallel sparse unsymmetric solver for linear systems of complex
  13.      equations
  14.  
  15. SSSSYYYYNNNNOOOOPPPPSSSSIIIISSSS
  16.      Fortran synopsis:
  17.  
  18.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDEEEESSSSTTTTRRRROOOOYYYY ((((_t_o_k_e_n))))
  19.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  20.  
  21.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____EEEEXXXXTTTTRRRRAAAACCCCTTTTPPPPEEEERRRRMMMM ((((_t_o_k_e_n,,,, _p_e_r_m))))
  22.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _p_e_r_m(*)
  23.  
  24.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFAAAACCCCTTTTOOOORRRR ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,, _v_a_l_u_e_s))))
  25.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*), _i_n_d_i_c_e_s(*)
  26.           DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX _v_a_l_u_e_s(*)
  27.  
  28.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFAAAACCCCTTTTOOOORRRROOOOOOOOCCCC ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,, _v_a_l_u_e_s))))
  29.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*)
  30.           DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX _v_a_l_u_e_s(*)
  31.  
  32.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCLLLLIIIIMMMMIIIITTTT ((((_t_o_k_e_n,,,, _o_o_c_l_i_m_i_t))))
  33.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  34.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _o_o_c_l_i_m_i_t
  35.  
  36.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCPPPPAAAATTTTHHHH ((((_t_o_k_e_n,,,, _o_o_c_p_a_t_h))))
  37.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  38.           CCCCHHHHAAAARRRRAAAACCCCTTTTEEEERRRR _o_o_c_p_a_t_h(*)
  39.  
  40.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____OOOORRRRDDDDEEEERRRRIIIINNNNGGGG ((((_t_o_k_e_n,,,, _m_e_t_h_o_d))))
  41.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _m_e_t_h_o_d
  42.  
  43.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPRRRREEEEPPPPRRRROOOOCCCCEEEESSSSSSSS ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,,
  44.           _n_o_n__z_e_r_o_s,,,, _o_p_s))))
  45.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*)
  46.           IIIINNNNTTTTEEEEGGGGEEEERRRR****8888 _n_o_n__z_e_r_o_s
  47.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _o_p_s
  48.  
  49.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPRRRREEEEPPPPRRRROOOOCCCCEEEESSSSSSSSZZZZ ((((_t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s,,,, _i_n_d_i_c_e_s,,,, _m_a_s_k,,,,
  50.           _n_o_n__z_e_r_o_s,,,, _o_p_s))))
  51.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _n,,,, _p_o_i_n_t_e_r_s(*),,,, _i_n_d_i_c_e_s(*),,,, _m_a_s_k(*)
  52.           IIIINNNNTTTTEEEEGGGGEEEERRRR****8888 _n_o_n__z_e_r_o_s
  53.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN _o_p_s
  54.  
  55.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSOOOOLLLLVVVVEEEE ((((_t_o_k_e_n,,,, _x,,,, _b))))
  56.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  57.           DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX _x(*),,,, _b(*)
  58.  
  59.  
  60.  
  61.  
  62.  
  63.                                                                         PPPPaaaaggggeeee 1111
  64.  
  65.  
  66.  
  67.  
  68.  
  69.  
  70. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  71.  
  72.  
  73.  
  74.           SSSSUUUUBBBBRRRROOOOUUUUTTTTIIIINNNNEEEE ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSOOOOLLLLVVVVEEEEMMMM ((((_t_o_k_e_n,,,, _X,,,, _l_d_x,,,, _B,,,, _l_d_b,,,, _n_r_h_s))))
  75.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n,,,, _l_d_x,,,, _l_d_b,,,, _n_r_h_s
  76.           DDDDOOOOUUUUBBBBLLLLEEEE CCCCOOOOMMMMPPPPLLLLEEEEXXXX _X(*),,,, _B(*)
  77.  
  78.           DDDDOOOOUUUUBBBBLLLLEEEE PPPPRRRREEEECCCCIIIISSSSIIIIOOOONNNN FFFFUUUUNNNNCCCCTTTTIIIIOOOONNNN ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSTTTTOOOORRRRAAAAGGGGEEEE((((_t_o_k_e_n))))
  79.           IIIINNNNTTTTEEEEGGGGEEEERRRR _t_o_k_e_n
  80.  
  81.      C/C++ synopsis:
  82.  
  83.           ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____ssssppppaaaarrrrsssseeee....hhhh>>>>
  84.  
  85.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDeeeessssttttrrrrooooyyyy ((((iiiinnnntttt _t_o_k_e_n))));;;;
  86.  
  87.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _p_e_r_m[[[[]]]]))));;;;
  88.  
  89.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt _i_n_d_i_c_e_s[[[[]]]],,,,
  90.           ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx _v_a_l_u_e_s[[[[]]]]))));;;;
  91.  
  92.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  93.           _i_n_d_i_c_e_s[[[[]]]],,,, ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx _v_a_l_u_e_s[[[[]]]]))));;;;
  94.  
  95.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt ((((iiiinnnntttt _t_o_k_e_n,,,, ddddoooouuuubbbblllleeee _o_o_c_l_i_m_i_t))));;;;
  96.  
  97.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCPPPPaaaatttthhhh ((((iiiinnnntttt _t_o_k_e_n,,,, cccchhhhaaaarrrr _o_o_c_p_a_t_h[[[[]]]]))));;;;
  98.  
  99.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOrrrrddddeeeerrrriiiinnnngggg ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _m_e_t_h_o_d))));;;;
  100.  
  101.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  102.           _i_n_d_i_c_e_s[[[[]]]],,,, lllloooonnnngggg lllloooonnnngggg *_n_o_n__z_e_r_o_s,,,, ddddoooouuuubbbblllleeee *_o_p_s))));;;;
  103.  
  104.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  105.           _i_n_d_i_c_e_s[[[[]]]],,,, iiiinnnntttt _m_a_s_k[[[[]]]],,,, lllloooonnnngggg lllloooonnnngggg *_n_o_n__z_e_r_o_s,,,, ddddoooouuuubbbblllleeee *_o_p_s))));;;;
  106.  
  107.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee ((((iiiinnnntttt _t_o_k_e_n,,,, ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx _x[[[[]]]],,,, ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx _b[[[[]]]]))));;;;
  108.  
  109.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM ((((iiiinnnntttt _t_o_k_e_n,,,, ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx _X[[[[]]]],,,, iiiinnnntttt _l_d_x,,,,
  110.           ssssccccssssllll____zzzzoooommmmpppplllleeeexxxx _B[[[[]]]],,,, iiiinnnntttt _l_d_b,,,, iiiinnnntttt _n_r_h_s))));;;;
  111.  
  112.           ddddoooouuuubbbblllleeee ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSttttoooorrrraaaaggggeeee ((((iiiinnnntttt _t_o_k_e_n))));;;;
  113.  
  114.      C/C++ STL synopsis:
  115.  
  116.           ####iiiinnnncccclllluuuuddddeeee <<<<ccccoooommmmpppplllleeeexxxx....hhhh>>>>
  117.           ####iiiinnnncccclllluuuuddddeeee <<<<ssssccccssssllll____ssssppppaaaarrrrsssseeee....hhhh>>>>
  118.  
  119.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDeeeessssttttrrrrooooyyyy ((((iiiinnnntttt _t_o_k_e_n))));;;;
  120.  
  121.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _p_e_r_m[[[[]]]]))));;;;
  122.  
  123.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt _i_n_d_i_c_e_s[[[[]]]],,,,
  124.           ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> _v_a_l_u_e_s[[[[]]]]))));;;;
  125.  
  126.  
  127.  
  128.  
  129.                                                                         PPPPaaaaggggeeee 2222
  130.  
  131.  
  132.  
  133.  
  134.  
  135.  
  136. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  137.  
  138.  
  139.  
  140.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  141.           _i_n_d_i_c_e_s[[[[]]]],,,, ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> _v_a_l_u_e_s[[[[]]]]))));;;;
  142.  
  143.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt ((((iiiinnnntttt _t_o_k_e_n,,,, ddddoooouuuubbbblllleeee _o_o_c_l_i_m_i_t))));;;;
  144.  
  145.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCPPPPaaaatttthhhh ((((iiiinnnntttt _t_o_k_e_n,,,, cccchhhhaaaarrrr _o_o_c_p_a_t_h[[[[]]]]))));;;;
  146.  
  147.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOrrrrddddeeeerrrriiiinnnngggg ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _m_e_t_h_o_d))));;;;
  148.  
  149.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  150.           _i_n_d_i_c_e_s[[[[]]]],,,, lllloooonnnngggg lllloooonnnngggg *_n_o_n__z_e_r_o_s,,,, ddddoooouuuubbbblllleeee *_o_p_s))));;;;
  151.  
  152.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ ((((iiiinnnntttt _t_o_k_e_n,,,, iiiinnnntttt _n,,,, iiiinnnntttt _p_o_i_n_t_e_r_s[[[[]]]],,,, iiiinnnntttt
  153.           _i_n_d_i_c_e_s[[[[]]]],,,, iiiinnnntttt _m_a_s_k[[[[]]]],,,, lllloooonnnngggg lllloooonnnngggg *_n_o_n__z_e_r_o_s,,,, ddddoooouuuubbbblllleeee *_o_p_s))));;;;
  154.  
  155.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee ((((iiiinnnntttt _t_o_k_e_n,,,, ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> _x[[[[]]]],,,, ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>>
  156.           _b[[[[]]]]))));;;;
  157.  
  158.           vvvvooooiiiidddd ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM ((((iiiinnnntttt _t_o_k_e_n,,,, ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> _X[[[[]]]],,,, iiiinnnntttt _l_d_x,,,,
  159.           ccccoooommmmpppplllleeeexxxx<<<<ddddoooouuuubbbblllleeee>>>> _B[[[[]]]],,,, iiiinnnntttt _l_d_b,,,, iiiinnnntttt _n_r_h_s))));;;;
  160.  
  161.           ddddoooouuuubbbblllleeee ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSttttoooorrrraaaaggggeeee ((((iiiinnnntttt _t_o_k_e_n))));;;;
  162.  
  163. IIIIMMMMPPPPLLLLEEEEMMMMEEEENNNNTTTTAAAATTTTIIIIOOOONNNN
  164.      These routines are part of the SCSL Scientific Library and can be loaded
  165.      using either the ----llllssssccccssss or the ----llllssssccccssss____mmmmpppp option.  The ----llllssssccccssss____mmmmpppp option
  166.      directs the linker to use the multi-processor version of the library.
  167.  
  168.      When linking to SCSL with ----llllssssccccssss or ----llllssssccccssss____mmmmpppp, the default integer size is
  169.      4 bytes (32 bits). Another version of SCSL is available in which integers
  170.      are 8 bytes (64 bits). This version allows the user access to larger
  171.      memory sizes and helps when porting legacy Cray codes.  It can be loaded
  172.      by using the ----llllssssccccssss____iiii8888 option or the ----llllssssccccssss____iiii8888____mmmmpppp option.  A program may
  173.      use only one of the two versions; 4-byte integer and 8-byte integer
  174.      library calls cannot be mixed.
  175.  
  176.      The C and C++ prototypes shown above are appropriate for the 4-byte
  177.      integer version of SCSL. When using the 8-byte integer version, the
  178.      variables of type iiiinnnntttt become lllloooonnnngggg lllloooonnnngggg and the <<<<ssssccccssssllll____ssssppppaaaarrrrsssseeee____iiii8888....hhhh>>>> header
  179.      file should be included.
  180.  
  181. DDDDEEEESSSSCCCCRRRRIIIIPPPPTTTTIIIIOOOONNNN
  182.      ZZZZPPPPSSSSLLLLDDDDUUUU solves sparse unsymmetric linear systems of the form _A_x = _b where
  183.      _A is a complex _n-by-_n input matrix having symmetric non-zero pattern but
  184.      unsymmetric non-zero values, _b is a complex input vector of length _n, and
  185.      _x is an unknown complex vector of length _n.
  186.  
  187.      ZZZZPPPPSSSSLLLLDDDDUUUU uses a direct method. _A is factored into the following form:
  188.  
  189.           _A = _L _D _U
  190.  
  191.  
  192.  
  193.  
  194.  
  195.                                                                         PPPPaaaaggggeeee 3333
  196.  
  197.  
  198.  
  199.  
  200.  
  201.  
  202. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  203.  
  204.  
  205.  
  206.      where _L is a lower triangular matrix with unit diagonal, _D is a diagonal
  207.      matrix, and UUUU is an upper triangular matrix with unit diagonal.
  208.  
  209.      Note that NO PIVOTING FOR STABILITY is performed during factorization.
  210.  
  211.      The ZZZZPPPPSSSSLLLLDDDDUUUU library contains five main routines.
  212.  
  213.      *   ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOrrrrddddeeeerrrriiiinnnngggg(((()))) allows the user to select one of five possible
  214.          reordering methods to be used in the matrix preprocessing phase.
  215.  
  216.      *   ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))) performs preprocessing operations on the
  217.          structure of _A (heuristic reordering to reduce fill in _L and _U,
  218.          symbolic factorization, etc.).
  219.  
  220.      *   ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))) factors the matrix _A into _L and _U, using the
  221.          previously computed preprocessing data.
  222.  
  223.      *   ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) solves for a vector _x, given an input vector _b.
  224.  
  225.      *   ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDeeeessssttttrrrrooooyyyy(((()))) frees all storage associated with the matrix _A
  226.          (including _L, _D, _U, and various data structures computed during
  227.          preprocessing).
  228.  
  229.      The user can call ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))) several times after a single call to
  230.      ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))) to factor multiple matrices with identical non-zero
  231.      structures but different values.  Similarly, the user can call
  232.      ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) several times after a single call to ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))) to
  233.      solve for multiple right-hand-sides.  Also, the user can call
  234.      ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))) to solve for multiple right-hand-sides all stored in a
  235.      single array.
  236.  
  237.    SSSSppppaaaarrrrsssseeee MMMMaaaattttrrrriiiixxxx FFFFoooorrrrmmmmaaaatttt
  238.      Sparse matrix _A must be input to ZZZZPPPPSSSSLLLLDDDDUUUU in Harwell-Boeing format (also
  239.      known as Compressed Column Storage format).
  240.  
  241.      The matrix is held in three arrays: _p_o_i_n_t_e_r_s, _i_n_d_i_c_e_s, and _v_a_l_u_e_s.  The
  242.      _i_n_d_i_c_e_s array contains the row indices of the non-zeros in _A. The _v_a_l_u_e_s
  243.      array holds the corresponding non-zero values. The _p_o_i_n_t_e_r_s array
  244.      contains the index in _i_n_d_i_c_e_s for the first non-zero in each column of _A.
  245.      Thus, the row indices for the non-zeros in column _i can be found in
  246.      locations _i_n_d_i_c_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i]]]]]]]] through _i_n_d_i_c_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i+1]]]]-1]]]]. The
  247.      corresponding values can be found in location _v_a_l_u_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i]]]]]]]] through
  248.      _v_a_l_u_e_s[[[[_p_o_i_n_t_e_r_s[[[[_i+1]]]]-1]]]].
  249.  
  250.      ZZZZPPPPSSSSLLLLDDDDUUUU imposes one constraint on the representation of the _A matrix. The
  251.      non-zeros within each column must appear in order of increasing row
  252.      number.
  253.  
  254.      In the following example, the unsymmetric matrix
  255.  
  256.      (1.0,2.0) (0.0,0.0) (5.0,10.0) (0.0, 0.0)
  257.      (0.0,0.0) (3.0,6.0) (0.0, 0.0) (8.0,16.0)
  258.  
  259.  
  260.  
  261.                                                                         PPPPaaaaggggeeee 4444
  262.  
  263.  
  264.  
  265.  
  266.  
  267.  
  268. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  269.  
  270.  
  271.  
  272.      (2.0,4.0) (0.0,0.0) (7.0,14.0) (0.0, 0.0)
  273.      (0.0,0.0) (4.0,8.0) (0.0, 0.0) (9.0,18.0)
  274.  
  275.  
  276.      would be represented in FORTRAN as follows:
  277.  
  278.       INTEGER pointers(5), indices(8), i
  279.       DOUBLE COMPLEX values(8)
  280.       DATA (pointers(i), i = 1, 5) / 1, 3, 5, 7, 9 /
  281.       DATA (indices(i),  i = 1, 8) / 1, 3, 2, 4, 1, 3, 2, 4 /
  282.       DATA (values(i),   i = 1, 8) / (1.0,2.0), (2.0,4.0), (3.0,6.0),
  283.      &                               (4.0,8.0), (5.0,10.0), (7.0,14.0),
  284.      &                               (8.0,16.0), (9.0,18.0) /
  285.  
  286.  
  287.      Zero-based indexing is used in C, so the pointers, indices, and values
  288.      arrays would contain the following:
  289.  
  290.      int pointers[]  = {0, 2, 4, 6, 8};
  291.      int indices[]   = {0, 2, 1, 3, 0, 2, 1, 3};
  292.      scsl_zomplex values[] = {{1.0,2.0}, {2.0,4.0}, {3.0,6.0},
  293.                               {4.0,8.0}, {5.0,10.0}, {7.0,14.0},
  294.                               {8.0,16.0}, {9.0,18.0}};
  295.  
  296.  
  297.    OOOOrrrrddddeeeerrrriiiinnnngggg MMMMeeeetttthhhhooooddddssss
  298.      The ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOrrrrddddeeeerrrriiiinnnngggg((((_t_o_k_e_n,,,, _m_e_t_h_o_d)))) routine allows the user to change the
  299.      ordering method used to pre-order the matrix before factorization.  This
  300.      routine must be called before calling ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))). Five options
  301.      are currently available for the method parameter:
  302.  
  303.      *   Method 0 performs no pre-ordering
  304.  
  305.      *   Method 1 performs Approximate Minimum Fill ordering
  306.  
  307.      *   Method 2 performs a single nested dissection ordering (default).
  308.          This method is often called "Extreme matrix ordering".
  309.  
  310.      *   Method 3 performs multiple nested dissection orderings (in parallel)
  311.  
  312.      *   Method 4 performs multiple nested dissection (the same as in Method
  313.          3), but it uses a feedback file to "learn" from the previous solves
  314.          of the same matrix structure and it performs more orderings. The
  315.          multiple nested dissection technique of Methods 3 and 4 is also
  316.          referred to as "Extreme2 matrix ordering".
  317.  
  318.      Method 2 is significantly more expensive than Method 1, but it usually
  319.      produces significantly better orderings.  Method 3 is especially
  320.      effective on multi-processor systems.  It computes OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS (where
  321.      OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS is an environment variable indicating the number of
  322.      processors to be used for parallel computation) matrix orderings using
  323.      different starting points for the algorithm and uses the ordering that
  324.  
  325.  
  326.  
  327.                                                                         PPPPaaaaggggeeee 5555
  328.  
  329.  
  330.  
  331.  
  332.  
  333.  
  334. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  335.  
  336.  
  337.  
  338.      will lead to the fewest floating-point operations to factorize the
  339.      matrix.
  340.  
  341.      Method 4 is useful only when the same non-zero structure is used for
  342.      multiple solves.  Method 4 keeps a record in a "feedback" file of a
  343.      signature for non-zero structures for a maximum of 200 matrices and of
  344.      the starting point that was saved from a previous solve for that
  345.      structure.  In the next Method 4 ordering for that non-zero structure,
  346.      that best starting point and 2222 **** OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS ---- 1111 new ones generate
  347.      orderings.  The best ordering is used.  In this way, the quality of
  348.      orderings stay the same or improve over time.
  349.  
  350.      Methods 3 and 4 typically take more time for the matrix preprocessing
  351.      than the default.  However, on large systems or on repeated
  352.      factorizations, significant overall speedups (1.1X to 2X) can be obtained
  353.      compared to Method 2.
  354.  
  355.    EEEExxxxttttrrrraaaaccccttttiiiinnnngggg tttthhhheeee ppppeeeerrrrmmmmuuuuttttaaaattttiiiioooonnnn vvvveeeeccccttttoooorrrr
  356.      Unless ordering Method 0 is used, ZZZZPPPPSSSSLLLLDDDDUUUU applies a symmetric permutation
  357.      to matrix A before the factorization step; the resulting permuted matrix
  358.      generally has significantly less fill-in than the original matrix.  The
  359.      user can obtain the permutation matrix associated with a given token by
  360.      calling ZZZZPPPPSSSSLLLLDDDDUUUU____EEEExxxxttttrrrraaaaccccttttPPPPeeeerrrrmmmm((((_t_o_k_e_n,,,, _p_e_r_m)))). The permutation is returned as
  361.      an integer array of length _n, with 1111 <<<<==== ppppeeeerrrrmmmm((((iiii)))) <<<<==== nnnn (0000 <<<<==== ppppeeeerrrrmmmm[[[[iiii]]]] <<<< nnnn
  362.      for C code).
  363.  
  364.      A value of _k for _p_e_r_m(_i) implies that node _k in the original ordering is
  365.      node _i in the new ordering.
  366.  
  367.    MMMMaaaattttrrrriiiicccceeeessss wwwwiiiitttthhhh zzzzeeeerrrroooossss oooonnnn tttthhhheeee ddddiiiiaaaaggggoooonnnnaaaallll
  368.      As noted above, no pivoting is done for stability during factorization;
  369.      when zero or near-zero pivots are encountered, ZZZZPPPPSSSSLLLLDDDDUUUU usually fails. In
  370.      these cases, it may be possible to use ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ(((()))) to obtain a
  371.      slightly different, but stable, ordering.  The user provides an
  372.      additional integer array, _m_a_s_k, as an argument to ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ(((()))).
  373.      If _m_a_s_k(_i)====0000, then ZZZZPPPPSSSSLLLLDDDDUUUU will attempt to maximize the diagonal element
  374.      ||||AAAAiiiiiiii||||.
  375.  
  376.    MMMMeeeemmmmoooorrrryyyy uuuussssaaaaggggeeee
  377.      The returned value of ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSttttoooorrrraaaaggggeeee(((()))) is an estimate of the amount of
  378.      storage required (in millions of bytes) by the solver's data structures
  379.      for a given matrix system.
  380.  
  381.    OOOOuuuutttt----ooooffff----ccccoooorrrreeee FFFFaaaaccccttttoooorrrriiiizzzzaaaattttiiiioooonnnn
  382.      The storage associated with the factor can be managed in two ways.  The
  383.      ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))) routine allocates memory for the factor and manages it
  384.      internally, releasing it only when ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDeeeessssttttrrrrooooyyyy(((()))) is called.  The
  385.      alternative is to do out-of-core factorization by calling
  386.      ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))). This routine uses a small amount of in-core memory,
  387.      placing the remainder of the factor matrix on disk as it is computed.
  388.      The user can call ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCPPPPaaaatttthhhh(((()))) to indicate the directory in which the
  389.      factor file should be written, and ZZZZPPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCLLLLiiiimmmmiiiitttt(((()))) to indicate how much
  390.  
  391.  
  392.  
  393.                                                                         PPPPaaaaggggeeee 6666
  394.  
  395.  
  396.  
  397.  
  398.  
  399.  
  400. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  401.  
  402.  
  403.  
  404.      memory to use to hold portions of the factor matrix in-core.  More in-
  405.      core memory generally leads to less disk I/O and higher performance
  406.      during the factorization.  The only required change is to move from in-
  407.      core factorization to out-of-core factorization is the change from
  408.      ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))) to ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))).  The other routines
  409.      (ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))), ZZZZPPPPSSSSLLLLDDDDUUUU____DDDDeeeessssttttrrrrooooyyyy(((()))), etc.) handle out-of-core factors
  410.      transparently.  Note that ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))) and subsequent calls to
  411.      ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) are not parallelized (but calls to ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))) are
  412.      parallelized, as discussed below).
  413.  
  414.    MMMMuuuullllttttiiiipppplllleeee RRRRiiiigggghhhhtttt----HHHHaaaannnndddd----SSSSiiiiddddeeeessss
  415.      ZZZZPPPPSSSSLLLLDDDDUUUU can solve for large numbers of right-hand-sides with one call to
  416.      ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))).  It solves these right hand sides in parallel, with each
  417.      processor solving up to four at a time for in-core systems and up to
  418.      PPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCBBBBLLLLKKKK at a time for out-of-core systems, where PPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCBBBBLLLLKKKK is an
  419.      environment variable whose default value is 1.
  420.  
  421.    IIIInnnn----ppppllllaaaacccceeee SSSSoooollllvvvveeeessss
  422.      Both ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) and ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))) allow the solution vector(s) to
  423.      overwrite the right-hand-side(s) when identical vectors or matrices are
  424.      supplied to these routines.  For example,
  425.  
  426.       CALL ZPSLDU_SOLVE(token, b, b)
  427.  
  428.  
  429.      takes the right-hand-side input from _b and also returns the solution
  430.      vector in _b.  When this option is used with ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))), the leading
  431.      dimensions for the solution and right-hand-side matrices must agree.  The
  432.      amount of memory actually saved by performing an in-place solve depends
  433.      on the number of right-hand-sides used.  For a single right-hand-side,
  434.      there are no net savings versus an out-of-place solve because a temporary
  435.      copy of the input vector is made internally.  For multiple right-hand-
  436.      sides the memory overhead decreases as the ratio of right-hand-sides to
  437.      processors used increases.
  438.  
  439.    AAAArrrrgggguuuummmmeeeennnnttttssss
  440.      These routines have the following arguments:
  441.  
  442.      _t_o_k_e_n     (input) ZZZZPPPPSSSSLLLLDDDDUUUU can handle multiple matrices simultaneously. The
  443.                _t_o_k_e_n distinguishes between active matrices.  The _t_o_k_e_n passed
  444.                to ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))) must match the _t_o_k_e_n used in some previous
  445.                call to ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssss(((()))).  Similarly, the _t_o_k_e_n passed to
  446.                ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) must match the _t_o_k_e_n used in some previous call
  447.                to ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrr(((()))).  0000 <<<<==== _t_o_k_e_n <<<<==== 11119999....
  448.  
  449.      _m_e_t_h_o_d    (input) An integer specifying the ordering method used during
  450.                preprocessing.  0000 <<<<==== _m_e_t_h_o_d <<<<==== 4444....
  451.  
  452.      _n         (input) The number of rows and columns in the matrix _A.  _n >>>>====
  453.                0000....
  454.  
  455.  
  456.  
  457.  
  458.  
  459.                                                                         PPPPaaaaggggeeee 7777
  460.  
  461.  
  462.  
  463.  
  464.  
  465.  
  466. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  467.  
  468.  
  469.  
  470.      _p_o_i_n_t_e_r_s, _i_n_d_i_c_e_s, _v_a_l_u_e_s
  471.                (input) The _p_o_i_n_t_e_r_s and _i_n_d_i_c_e_s arrays store the non-zero
  472.                structure of sparse input matrix _A in Harwell-Boeing or
  473.                Compressed Sparse Column (CSC) format.
  474.  
  475.                The _p_o_i_n_t_e_r_s array stores _n+1 integers, where _p_o_i_n_t_e_r_s[[[[_i]]]] gives
  476.                the index in _i_n_d_i_c_e_s of the first non-zero in column _i of _A.
  477.                The _i_n_d_i_c_e_s array stores the row indices of the non-zeros in _A.
  478.                The _v_a_l_u_e_s array stores the non-zero values in the matrix _A.
  479.  
  480.      _n_o_n__z_e_r_o_s (output) The number of non-zero values in _L and _U.
  481.  
  482.      _o_p_s       (output) The number of floating-point operations required to
  483.                factor _A.
  484.  
  485.      _m_a_s_k      (input) An integer array of length _n used in
  486.                ZZZZPPPPSSSSLLLLDDDDUUUU____PPPPrrrreeeepppprrrroooocccceeeessssssssZZZZ(((()))).  If _m_a_s_k(_i) ==== 0000, then node _i of matrix A
  487.                is ordered after all of its neighbors in an attempt to avoid a
  488.                zero pivot.
  489.  
  490.      _b         (input) The right-hand-side vector in a ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) call.
  491.  
  492.      _x         (output) The solution vector in a ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeee(((()))) call.
  493.  
  494.      _n_r_h_s      (input) The number of right-hand side vectors present in a
  495.                ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))) call.
  496.  
  497.      _B         (input) The right-hand-side matrix in a ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))) call.
  498.                Must be stored in column-major order.
  499.  
  500.      _l_d_b       (input) The leading dimension of matrix _B. _l_d_b >>>>==== _n.
  501.  
  502.      _X         (output) The solution matrix in a ZZZZPPPPSSSSLLLLDDDDUUUU____SSSSoooollllvvvveeeeMMMM(((()))) call. Must be
  503.                stored in column-major order.
  504.  
  505.      _l_d_x       (input) The leading dimension of matrix _X. _l_d_x >>>>==== _n.
  506.  
  507.      _o_o_c_p_a_t_h   (input) A character array/string with a path to the directory
  508.                where the temporary out-of-core factor files should be stored.
  509.                If this path is on a striped (or raid-0) file system, the
  510.                performance of the out-of-core solves can be considerably
  511.                improved.  The default path is ////uuuussssrrrr////ttttmmmmpppp.
  512.  
  513.      _o_o_c_l_i_m_i_t  (input) A double precision number indicating the number of
  514.                Mbytes of random access memory that should be used for factor
  515.                storage during a call to ZZZZPPPPSSSSLLLLDDDDUUUU____FFFFaaaaccccttttoooorrrrOOOOOOOOCCCC(((()))). Note that there
  516.                are many other arrays used besides those directly used to store
  517.                the factorization, so total RAM usage by the solve will exceed
  518.                this number.  The default is 64 MB.
  519.  
  520.  
  521.  
  522.  
  523.  
  524.  
  525.                                                                         PPPPaaaaggggeeee 8888
  526.  
  527.  
  528.  
  529.  
  530.  
  531.  
  532. ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))                                                          ZZZZPPPPSSSSLLLLDDDDUUUU((((3333SSSS))))
  533.  
  534.  
  535.  
  536.      _p_e_r_m      (output) An integer array of length _n containing the
  537.                permutation used to reorder matrix A.
  538.  
  539. EEEENNNNVVVVIIIIRRRROOOONNNNMMMMEEEENNNNTTTT VVVVAAAARRRRIIIIAAAABBBBLLLLEEEESSSS
  540.      Two environment variables can affect the operation of ordering methods 3
  541.      and 4.  SSSSPPPPAAAARRRRSSSSEEEE____NNNNUUUUMMMM____OOOORRRRDDDDEEEERRRRSSSS can be used to change the number of orderings
  542.      performed from the default of OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS for Method 3 and
  543.      (2*OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS) for Method 4.  SSSSPPPPAAAARRRRSSSSEEEE____FFFFEEEEEEEEDDDDBBBBAAAACCCCKKKK____FFFFIIIILLLLEEEE can be set to the
  544.      path and file name where the feedback information will be kept;
  545.      otherwise, the default feedback file is $$$$HHHHOOOOMMMMEEEE////....ssssppppaaaarrrrsssseeeeFFFFeeeeeeeeddddbbbbaaaacccckkkk.  This file
  546.      will be less than 5K bytes.
  547.  
  548.      The environment variable OOOOMMMMPPPP____NNNNUUUUMMMM____TTTTHHHHRRRREEEEAAAADDDDSSSS determines the number of
  549.      processors that are used for the numerical factorization and solve
  550.      phases.  Out-of-core solves can be performed in groups of PPPPSSSSLLLLDDDDUUUU____OOOOOOOOCCCCBBBBLLLLKKKK
  551.      right-hand-sides per processor.  Setting the environment variable
  552.      PPPPSSSSLLLLDDDDUUUU____VVVVEEEERRRRBBBBOOOOSSSSEEEE causes ZZZZPPPPSSSSLLLLDDDDUUUU to output information about the
  553.      factorization.
  554.  
  555. NNNNOOOOTTTTEEEESSSS
  556.      These routines are optimized and parallelized for the SGI R8000 and
  557.      R1x000 platforms.
  558.  
  559. SSSSEEEEEEEE AAAALLLLSSSSOOOO
  560.      IIIINNNNTTTTRRRROOOO____SSSSCCCCSSSSLLLL(3S), IIIINNNNTTTTRRRROOOO____SSSSOOOOLLLLVVVVEEEERRRRSSSS(3S), ZZZZPPPPSSSSLLLLDDDDLLLLTTTT(3S), DDDDPPPPSSSSLLLLDDDDLLLLTTTT(3S), DDDDPPPPSSSSLLLLDDDDUUUU(3S)
  561.  
  562.  
  563.  
  564.  
  565.  
  566.  
  567.  
  568.  
  569.  
  570.  
  571.  
  572.  
  573.  
  574.  
  575.  
  576.  
  577.  
  578.  
  579.  
  580.  
  581.  
  582.  
  583.  
  584.  
  585.  
  586.  
  587.  
  588.                                                                         PPPPaaaaggggeeee 9999
  589.  
  590.  
  591.  
  592.  
  593.  
  594.  
  595.